On the geometry of validity criterion for non-wellfounded proofs

Esaïe Bauer \& Alexis Saurin

Université Paris-Cité

September 13, 2023

Table des matières

(1) Context
(2) Cut-elimination
(3) Extension of the bouncing criterion
4. Focalisation

Table des matières

(1) Context
(2) Cut-elimination
(3) Extension of the bouncing criterion
4) Focalisation

$\mu \mathrm{MALL}{ }^{\infty}$ formulas \& derivation rules

$$
\phi, \psi::=\phi^{\curlyvee} \psi|\phi \otimes \psi| \phi \& \psi|\phi \oplus \psi| \perp|1| \mathrm{T}|0| X \in \mathcal{V}|\mu X . \phi| \nu X . \phi .
$$

$\mu \mathrm{MALL}^{\infty}$ formulas \& derivation rules

$$
\begin{aligned}
& \phi, \psi::=\phi^{\mathcal{Y}} \psi|\phi \otimes \psi| \phi \& \psi|\phi \oplus \psi| \perp|1| \mathrm{T}|0| X \in \mathcal{V}|\mu X . \phi| \nu X . \phi . \\
& \left\lceil\stackrel{\vdash, A^{\perp}}{ } \mathrm{ax} \quad \stackrel{\vdash A, \Gamma \quad \vdash A^{\perp}, \Delta}{\vdash \Gamma, \Delta}\right. \text { cut } \\
& \frac{\vdash A, \Delta_{1} \quad \vdash B, \Delta_{2}}{\vdash A \otimes B, \Delta_{1}, \Delta_{2}} \otimes \quad \frac{\vdash A, B, \Gamma}{\vdash A \ngtr B, \Gamma}> \\
& \frac{\vdash A_{1}, \Gamma}{\vdash A_{1} \oplus A_{2}, \Gamma} \oplus^{1} \quad \frac{\vdash A_{2}, \Gamma}{\vdash A_{1} \oplus A_{2}, \Gamma} \oplus^{2} \quad \frac{\vdash A_{1}, \Gamma}{\vdash A_{1} \& A_{2}, \Gamma} \& \\
& \frac{\vdash A[X:=\mu X \cdot A], \Gamma}{\vdash \mu X \cdot A, \Gamma} \mu \quad \frac{\vdash A[X:=\nu X \cdot A], \Gamma}{\vdash \nu X \cdot A, \Gamma} \nu
\end{aligned}
$$

$\mu \mathrm{MALL}^{\infty}$ formulas \& derivation rules

$$
\begin{aligned}
& \phi, \psi::=\phi^{X} \gamma|\phi \otimes \psi| \phi \& \psi|\phi \oplus \psi| \perp|1| \mathrm{T}|0| X \in \mathcal{V}|\mu X . \phi| \nu X . \phi . \\
& \frac{\vdash-A^{\perp}}{} \text { ax } \quad \stackrel{\vdash A, \Gamma \quad \vdash A^{\perp}, \Delta}{\vdash \Gamma, \Delta} \text { cut } \\
& \frac{\vdash A, \Delta_{1} \quad \vdash B, \Delta_{2}}{\vdash A \otimes B, \Delta_{1}, \Delta_{2}} \otimes \quad \frac{\vdash A, B, \Gamma}{\vdash A \times B, \Gamma} \ngtr \\
& \frac{\vdash A_{1}, \Gamma}{\vdash A_{1} \oplus A_{2}, \Gamma} \oplus^{1} \quad \frac{\vdash A_{2}, \Gamma}{\vdash A_{1} \oplus A_{2}, \Gamma} \oplus^{2} \quad \frac{\vdash A_{1}, \Gamma \quad \vdash A_{2}, \Gamma}{\vdash A_{1} \& A_{2}, \Gamma} \& \\
& \frac{\vdash A[X:=\mu X \cdot A], \Gamma}{\vdash \mu X \cdot A, \Gamma} \mu \quad \frac{\vdash A[X:=\nu X \cdot A], \Gamma}{\vdash \nu X \cdot A, \Gamma} \nu
\end{aligned}
$$

Sequent will be set of occurrences, that are couples of a formula and an address characterizing an occurrence of a formula in the proof. We denote them by A, B, C, F, G, H.

Two-sided vs. One-sided presentation

Two sided sequent

At first, we had two-sided sequent:

$$
Г \vdash \Delta
$$

but by orthogonality, it is possible to only consider one-sided sequent:

$$
\vdash \Gamma^{\perp}, \Delta \quad \Leftrightarrow \quad \Gamma \vdash \Delta
$$

Two-sided vs. One-sided presentation

Two sided sequent

At first, we had two-sided sequent:

$$
\Gamma \vdash \Delta
$$

but by orthogonality, it is possible to only consider one-sided sequent:

$$
\vdash \Gamma^{\perp}, \Delta \quad \Leftrightarrow \quad \Gamma \vdash \Delta
$$

Transcription of rules

$$
\begin{array}{ccc}
\frac{\Gamma_{1}, A_{1} \vdash \Delta_{1}}{\vdash \Gamma_{1}, \Gamma_{2}, A_{1} \not 又 A_{2} \vdash A_{2} \vdash \Delta_{1}, \Delta_{2}} \mathcal{X}_{1} & \Leftrightarrow & \frac{\vdash \Gamma_{1}^{\perp}, A_{1}^{\perp}, \Delta_{1} \vdash \Gamma_{2}^{\perp}, A_{2}^{\perp} \vdash \Delta_{2}}{\vdash \Gamma_{1}^{\perp}, \Gamma_{2}^{\perp}, A_{1}^{\perp} \otimes A_{2}^{\perp}, \Delta_{1}, \Delta_{2}} \otimes_{r} \\
\frac{\Gamma, A[X:=\mu X . A] \vdash \Delta}{\Gamma, \mu X . A \vdash \Delta} \mu_{\prime} & \Leftrightarrow & \frac{\vdash \Gamma^{\perp}, A^{\perp}\left[X:=\nu X . A^{\perp}\right] \Delta}{\vdash \Gamma^{\perp}, \nu X . A^{\perp}, \Delta} \nu_{r}
\end{array}
$$

Examples

Nat : $=\mu X .1 \oplus X$

Examples

Nat := $\mu X .1 \oplus X$

Inhabitant of natural number type

$$
\pi_{0}:=\frac{\frac{\vdash^{\vdash 1}}{\vdash 1 \oplus \mathrm{Nat}}}{\frac{\vdash \mathrm{Nat}}{\vdash}} \mu \quad \pi_{n+1}:=\frac{\pi_{n}}{\frac{\vdash \mathrm{Nat}}{\vdash 1 \oplus \mathrm{Nat}} \oplus_{2}} \mu
$$

Examples

$$
\text { Nat }:=\mu X .1 \oplus X
$$

Inhabitant of natural number type

$$
\pi_{0}:=\frac{\frac{\vdash^{\vdash 1}}{1}}{\frac{1 \oplus \mathrm{Nat}}{\vdash \mathrm{Nat}}} \oplus_{\mathbf{1}} \quad \pi_{n+1}:=\frac{\pi_{n}}{\frac{\vdash \mathrm{Nat}}{\vdash \mathrm{Nat}}} \oplus_{2}
$$

Some functions

Validity condition

$$
\frac{\frac{\vdash \mu X \cdot X}{\vdash \mu X \cdot X} \mu \quad \frac{\vdash \nu X \cdot X, \Gamma}{\vdash \nu X \cdot X, \Gamma} \nu}{\vdash \Gamma} \mathrm{cut}
$$

Validity condition

$$
\begin{array}{cc}
\vdots & \vdots \\
\frac{\vdash \mu X . X}{\vdash \mu X . X} \mu & \frac{\vdash \nu X \cdot X, \Gamma}{\vdash \nu X \cdot X, \Gamma} \nu \\
\vdash \Gamma & \mathrm{fut}
\end{array}
$$

Thread definition

A straight thread is a sequence of formula following a branch in a pre-proof.

Validity condition

$$
\begin{array}{cc}
\vdots & \vdots \\
\frac{\llcorner\mu X \cdot X}{\vdash \mu X . X} \mu & \frac{\vdash \nu X \cdot X, \Gamma}{\vdash \nu X \cdot X, \Gamma} \\
\vdash \Gamma & \mathrm{fut}
\end{array}
$$

Thread definition

A straight thread is a sequence of formula following a branch in a pre-proof.

Validity

A (straight) thread is said to be valid if its minimal formula (for sub-formula ordering) is infinitely active and is a ν-formula.
A branch is valid if there is a thread included in the branch which is valid. A pre-proof is valid (and is a proof) if each of its infinite branch are valid.

Examples

We set :
Nat := $\mu X .1 \oplus X \quad$ Stream Nat $:=\nu X$.Nat \& X

Examples

We set :

$$
\text { Nat }:=\mu X .1 \oplus X \quad \text { Stream Nat }:=\nu X . \text { Nat \& } X
$$

Examples

We set :

$$
\text { Nat }:=\mu X .1 \oplus X \quad \text { Stream Nat }:=\nu X \text {.Nat \& } X
$$

Property of the straight validity criterion

Cut-elimination (Baelde et al. 2016)
The cut-rule is admissible in $\mu \mathrm{MALL}^{\infty}$.

Property of the straight validity criterion

Cut-elimination (Baelde et al. 2016)
The cut-rule is admissible in $\mu \mathrm{MALL}^{\infty}$.
Focalisation (Baelde et al. 2016)
$\mu \mathrm{MALL}^{\infty}$ admits the focalisation property.

Limit of the straight validity criterion

$$
\frac{\frac{1}{\vdash \nu X . X, \mu X . X} \text { ax } \frac{\vdash \nu X \cdot X}{\vdash \nu X \cdot X}}{\vdash \nu X \cdot X} \text { cut } \quad \equiv \begin{gathered}
\vdots \\
\frac{\vdash \nu X \cdot X}{\vdash \nu X \cdot X} \nu
\end{gathered}
$$

Concrete example

Fusion $I_{1} I_{2}::=$ match I_{1} with
\mid nil $\Rightarrow I_{2}$
$\mid \operatorname{Cons}\left(a, l_{1}^{\prime}\right) \Rightarrow$ match l_{2} with nil $\Rightarrow \operatorname{Cons}\left(a, l_{1}^{\prime}\right)$
$\mid \operatorname{Cons}\left(b, l_{2}^{\prime}\right)$ match $\leq(a, b)$ with true $\Rightarrow \operatorname{Cons}\left(a\right.$, Fusion $\left.I_{1}^{\prime} \operatorname{Cons}\left(b, l_{2}^{\prime}\right)\right)$ false $\Rightarrow \operatorname{Cons}\left(b\right.$, Fusion $\left.\operatorname{Cons}\left(a, l_{1}^{\prime}\right) I_{2}^{\prime}\right)$.

Concrete example

$$
\text { List Nat }:=\mu X .1 \oplus(\text { Nat } \otimes X) \quad \text { Bool }:=1 \oplus 1
$$

Bouncing pre-thread

Bouncing pre-thread definition

A bouncing pre-thread is a sequence of formula following a path in a proof-tree. The path can go from the bot to the top of the tree or from the top to the bot, but can only change its direction on an axiom or on a cut of the formula it follow.

Bouncing pre-thread

Bouncing pre-thread definition

A bouncing pre-thread is a sequence of formula following a path in a proof-tree. The path can go from the bot to the top of the tree or from the top to the bot, but can only change its direction on an axiom or on a cut of the formula it follow.

Example

h-path, b-path

A b-path is intuitively a pre-thread that will cancel out and be reduced during a cut-elimination procedure.
An h-path is a pre-thread that is an axiom followed by a b-path.

h-path, b-path

A b-path is intuitively a pre-thread that will cancel out and be reduced during a cut-elimination procedure.
An h-path is a pre-thread that is an axiom followed by a b-path.

Bouncing thread

A bouncing thread is a pre-thread that can be decomposed by a sequence $\left(H_{i} \odot V_{i}\right)_{i \epsilon \omega}$ with H_{i} being an h-path and V_{i} being anything that is going upward and not meeting any axioms.

h-path, b-path

A b-path is intuitively a pre-thread that will cancel out and be reduced during a cut-elimination procedure.
An h-path is a pre-thread that is an axiom followed by a b-path.

Bouncing thread

A bouncing thread is a pre-thread that can be decomposed by a sequence $\left(H_{i} \odot V_{i}\right)_{i \epsilon \omega}$ with H_{i} being an h-path and V_{i} being anything that is going upward and not meeting any axioms.

Example

$$
\begin{aligned}
& \frac{\frac{\vdash \mu X . X, \nu X . X}{\vdash \mu X . X, \nu X . X}_{\vdash}^{\vdash}}{}{ }^{\text {ax }} \\
& \frac{\vdash \mu X . X, \nu X . X}{\vdash \nu X . X} \frac{\vdash \nu X . X}{\vdash \nu X . X}{ }^{\circ} \text { cut }
\end{aligned}
$$

Other examples

We set:

$$
F:=\nu X .(X \oplus 1) \otimes X \quad \& \quad G:=F \oplus 1
$$

Validity

Thread validity

Let t be a bouncing-thread with the decomposition $\left(H_{i} \odot V_{i}\right)_{i \in \omega}$ with H_{i} being h-path. We call $\left(V_{i}\right)_{i \epsilon \omega}$ the visible part of the thread t. $\left(\left(H_{i}\right)_{i \epsilon \omega}\right.$ is called the hidden part of the thread)
A bouncing-thread is valid if the least formula from (V_{i}) (for sub-formula ordering) is a ν-formula.

Validity

A $\mu \mathrm{MALL}^{\infty}$ pre-proof is bouncing valid if for each branches there is a valid bouncing-thread starting in it for which the visible part is completely included in the branch.

Examples

Examples

Table des matières

(1) Context

(2) Cut-elimination
(3) Extension of the bouncing criterion
4) Focalisation

Cut-elimination (Baelde et al. 2022)

The cut-rule is admissible.

Cut-elimination (Baelde et al. 2022)

The cut-rule is admissible.

Multi-cut

In order to prove the cut-elimination theorem, we use the multi-cut rule:

$$
\frac{\vdash \Gamma_{1}, \Delta_{1} \quad \ldots \quad \vdash \Gamma_{n}, \Delta_{n}}{\vdash \Gamma_{1}, \ldots, \Gamma_{n}} \text { mcut }
$$

with $\Delta_{1}, \ldots, \Delta_{n}$ being the cut-occurrences and satisfying an acyclicity and connexity condition (relative to the cut relation).

Multi-cut in action

Taking $F:=\nu X . X \otimes X$

Multi-cut in action

Taking $F:=\nu X . X \otimes X$

Multi-cut in action

Taking $F:=\nu X . X \otimes X$

Multi-cut in action

Taking $F:=\nu X . X \otimes X$

$$
\begin{aligned}
& \overline{\vdash F, F^{\perp}} \mathrm{ax} \quad \overline{\vdash F, F^{\perp}} \mathrm{ax} \\
& \frac{\vdash F \otimes F, F^{\perp}, F^{\perp}}{\frac{\vdash F, F^{\perp}, F^{\perp}}{\vdash F, F^{\perp} \ngtr F^{\perp}}>} \\
& \begin{array}{cc}
\begin{array}{c}
\pi \\
\vdash F \\
\vdash F \otimes F
\end{array} \otimes \\
\vdash F \otimes F
\end{array}
\end{aligned}
$$

Multi-cut in action

Taking $F:=\nu X . X \otimes X$

Multi-cut in action

Taking $F:=\nu X . X \otimes X$

Multi-cut in action

Taking $F:=\nu X . X \otimes X$

$$
\frac{\overline{\vdash F, F^{\perp}} \mathrm{ax} \quad \overline{\vdash F, F^{\perp}} \mathrm{ax}}{\frac{\vdash F \otimes, F^{\perp}, F^{\perp}}{\vdash F, F^{\perp}, F^{\perp}} \nu} \otimes
$$

Multi-cut in action

Taking $F:=\nu X . X \otimes X$

$$
\begin{aligned}
& \begin{array}{ll}
\frac{\vdash F, F^{\perp}}{} \text { ax } \overline{\vdash F, F^{\perp}} \text { ax } \\
\frac{\vdash F \otimes F, F^{\perp}, F^{\perp}}{\vdash F, F^{\perp}, F^{\perp}} \nu & \pi
\end{array} \\
& \begin{array}{ccc}
\left\lceil\vdash F, F^{\perp} \mathrm{ax}\right. & & \frac{\vdash F, F^{\perp}, F^{\perp}}{\vdash F, F^{\perp}} \text { ax } \\
\vdash F \otimes F, F^{\perp}, F^{\perp} & \pi & \frac{\vdash F, F^{\perp} \not 又 F^{\perp}}{\vdash} \boldsymbol{\vdash F}
\end{array} \\
& \frac{\vdash F \otimes F}{\vdash F} \nu
\end{aligned}
$$

Multi-cut in action

Taking $F:=\nu X . X \otimes X$

Trace of a reduction sequence

Trace

Let π be a proof and $\left(\pi_{i}\right)_{i \epsilon \omega}$ be a reduction sequence starting from π, the trace of π is the sub-tree of π containing all the sequents appearing on top of a mcut-rule.

Example

For such a proof:

$$
\frac{\frac{\vdash(\nu X . X)_{\alpha \cdot i},(\nu X . X)_{\gamma \cdot i}}{\vdash(\nu X . X)_{\alpha},(\nu X . X)_{\gamma \cdot i}} \nu}{\frac{\vdash(\nu X . X)_{\alpha},(\nu X . X)_{\gamma}}{} \nu} \frac{\frac{\vdash(\nu X . X)_{\beta \cdot \cdot i \cdot},(\mu X . X)_{\gamma^{\perp}}}{\vdash(\nu X . X)_{\beta \cdot i},(\mu X . X)_{\gamma^{\perp}}} \nu}{\vdash(\nu X . X)_{\alpha},(\nu X . X)_{\beta}} \nu^{\vdash(\nu X . X)_{\beta},(\mu X . X)_{\gamma^{\perp}}} c^{\prime}{ }^{\prime},
$$

the trace would be (there is only one possible reduction sequence):

$$
\frac{\vdash(\nu X . X)_{\alpha},(\nu X . X)_{\gamma}}{\vdash(\nu X . X)_{\alpha},(\nu X . X)_{\beta}} \frac{\frac{\vdash(\nu X . X)_{\beta \cdot \cdot i},(\mu X . X)_{\gamma^{\perp}}}{\vdash(\nu X . X)_{\beta \cdot i},(\mu X . X)_{\gamma^{\perp}}}}{\vdash(\nu X . X)_{\beta},(\mu X . X)_{\gamma^{\perp}}} \nu
$$

Truncated proof semantic

Truncation

A truncation τ is a partial function from (occurrence) addresses to $\{0, T\}$ satisfying $\tau\left(\alpha^{\perp}\right)=\tau(\alpha)^{\perp}$.

New rule

The rule system $\mu \mathrm{MALL} L_{\tau}^{\infty}$, is the $\mu \mathrm{MALL}$ system where rules on occurrences having addresses in the domain of τ are forbidden, and where there is a new rule:

$$
\frac{\vdash \Gamma, \tau(\alpha)}{\vdash \Gamma, F_{\alpha}} r_{\tau}
$$

Truncated proof semantic

Truncation

A truncation τ is a partial function from (occurrence) addresses to $\{0, T\}$ satisfying $\tau\left(\alpha^{\perp}\right)=\tau(\alpha)^{\perp}$.

New rule

The rule system $\mu \mathrm{MALL}_{\tau}^{\infty}$, is the $\mu \mathrm{MALL}$ system where rules on occurrences having addresses in the domain of τ are forbidden, and where there is a new rule:

$$
\frac{\vdash \Gamma, \tau(\alpha)}{\vdash \Gamma, F_{\alpha}} r_{\tau}
$$

Truncation associated to the trace

Let $\left(\pi_{i}\right)_{i \in \mathbb{N}}$ be a sequence of reduction, the truncation associated to the trace is the truncation τ where $\tau(\alpha)=\mathrm{T}$ if and only if α is the address of an occurrence in the trace, such that the rule on it is on the edge of the trace.

Example

$$
\frac{\frac{\vdash(\nu X . X)_{\alpha \cdot i},(\nu X . X)_{\gamma \cdot i}}{\vdash(\nu X . X)_{\alpha},(\nu X . X)_{\gamma \cdot i}} \nu}{\left.\frac{\vdash(\nu X . X)_{\alpha},(\nu X . X)_{\gamma}}{\vdash(\nu}\right)} \frac{\frac{\vdash(\nu X . X)_{\beta \cdot \cdot i \cdot},(\mu X . X)_{\gamma^{\perp}}}{\vdash(\nu X . X)_{\beta \cdot i},(\mu X . X)_{\gamma^{\perp}}} \nu}{\vdash(\nu X . X)_{\alpha},(\nu X . X)_{\beta}} \nu
$$

Example

$$
\begin{array}{cc}
\vdots & \vdots \\
\frac{\vdash(\nu X . X)_{\alpha \cdot i},(\nu X . X)_{\gamma \cdot i}}{\vdash(\nu X . X)_{\alpha},(\nu X . X)_{\gamma \cdot i}} \nu & \frac{\vdash(\nu X . X)_{\alpha},(\nu X . X)_{\gamma}}{\vdash(\nu X . X)_{\alpha},(\nu X . X)_{\beta}}
\end{array}
$$

By taking $\tau(\gamma)=\mathrm{T}, \tau\left(\gamma^{\perp}\right)=0$, we have:

$$
\frac{\frac{\vdash(\nu X . X)_{\alpha}, \top}{\vdash} r_{\tau}}{\frac{\vdash(\nu X . X)_{\alpha},(\nu X . X)_{\gamma}}{\vdash(\nu X . X)_{\alpha},(\nu X . X)_{\beta}}} \frac{\frac{\vdash(\nu X . X)_{\beta \cdot i \cdot i},(\mu X . X)_{\gamma^{\perp}}}{\vdash(\nu X . X)_{\beta \cdot i},(\mu X . X)_{\gamma^{\perp}}}}{\vdash(\nu X . X)_{\beta},(\mu X . X)_{\gamma^{\perp}}} \nu
$$

Soundness

For a truncation τ and each $\mu \mathrm{MALL}^{\infty}$ occurrences A, we associate a boolean $\llbracket A \rrbracket_{\tau}$ in $\{0, T\}$.

Soundness

For a truncation τ and each $\mu \mathrm{MALL}^{\infty}$ occurrences A, we associate a boolean $\llbracket A \rrbracket_{\tau}$ in $\{0, \tau\}$.

Soudness of bouncing $\mu \mathrm{MALL}^{\infty}$ system

For each proof of the sequent $\vdash A_{1}, \ldots, A_{n}$ of $\mu \mathrm{MALL}_{\tau}^{\infty}$, with τ coming from a truncation of a proof π, there is an i such that $\llbracket A_{i} \rrbracket_{\tau}=\mathrm{T}$.

Sketch of the proof for productivity

Lemma for productivity \& validity

The truncated (pre-)proof generated by the trace of a reduction sequence is a proof

Sketch of the proof for productivity

Lemma for productivity \& validity

The truncated (pre-)proof generated by the trace of a reduction sequence is a proof

Suppose by contradiction that there is an infinite sequence of multicut reduction that does not produce anything and starting by π.

Sketch of the proof for productivity

Lemma for productivity \& validity

The truncated (pre-)proof generated by the trace of a reduction sequence is a proof

Suppose by contradiction that there is an infinite sequence of multicut reduction that does not produce anything and starting by π.
Let π_{τ} be the truncated proof of its trace. As no rules are produced, it means that none occurrences from the bottom sequent are principal in π_{τ} except on an axiom (by fairness).

Sketch of the proof for productivity

Lemma for productivity \& validity

The truncated (pre-)proof generated by the trace of a reduction sequence is a proof

Suppose by contradiction that there is an infinite sequence of multicut reduction that does not produce anything and starting by π.
Let π_{τ} be the truncated proof of its trace. As no rules are produced, it means that none occurrences from the bottom sequent are principal in π_{τ} except on an axiom (by fairness).
The same is true for any occurrences bounded to those occurrences by an h-path, and occurrences bounded to those one by an h-path, and so on.

Sketch of the proof for productivity

Lemma for productivity \& validity

The truncated (pre-)proof generated by the trace of a reduction sequence is a proof

Suppose by contradiction that there is an infinite sequence of multicut reduction that does not produce anything and starting by π.
Let π_{τ} be the truncated proof of its trace. As no rules are produced, it means that none occurrences from the bottom sequent are principal in π_{τ} except on an axiom (by fairness).
The same is true for any occurrences bounded to those occurrences by an h-path, and occurrences bounded to those one by an h-path, and so on. If we replace all those occurrences by bottoms (and in particular the occurrences from the conlusion), we get a proof in $\mu \mathrm{MALL}_{\tau}^{\infty}$ of $\vdash \perp, \ldots, \perp$, contradicting the soundness of $\mu \mathrm{MALL}_{\tau}^{\infty}$.

Table des matières

(1) Context

(2) Cut-elimination
(3) Extension of the bouncing criterion

4 Focalisation

A new bouncing-criterion for $\mu \mathrm{MALL}^{\infty}$

We only change the definition of validity for proofs:

Extended validity

A $\mu \mathrm{MALL}{ }^{\infty}$ pre-proof is extended-bouncing valid if for each branches, there is a valid bouncing-thread starting in it for which the visible part intersects the branch infinitely often.

Other example

PL'18, January 01-03, 2018, New York, NY, USA David Baelde, Amina Doumane, Denis Kuperberg, and Alexis Saurin

Figure 1. Example of a valid and an invalid circular pre-proof.

Cut-elimination

work in progress
The extended-bouncing system eliminates cut.

Cut-elimination

work in progress
The extended-bouncing system eliminates cut.
Lemma for cut-elimination
Let π be a proof and R a reduction sequence starting from π, if an infinite branch is contained in the trace of R, then each thread validating the branch is contained in the trace of R.

Cut-elimination

work in progress
The extended-bouncing system eliminates cut.

Lemma for cut-elimination
Let π be a proof and R a reduction sequence starting from π, if an infinite branch is contained in the trace of R, then each thread validating the branch is contained in the trace of R.

The truncated (pre-)proof associated to the trace R is extended-bouncing valid.

Table des matières

(1) Context

(2) Cut-elimination
(3) Extension of the bouncing criterion

4 Focalisation

Definition of focalised proofs

A proof is focalised if the two conditions are satisfied:
Each sequent containing a negative formula is conclusion of a negative rules.
Each sequence of two subsequent sequents containing only positives are conclusion of rules acting on a formula and one of its sub-formula.

Example

More example

$$
\begin{aligned}
& \frac{\frac{\vdash c, c^{\perp}}{\vdash c, c^{\perp} \oplus 0} \oplus_{1}}{\frac{\frac{\vdash b \oplus c, c^{\perp} \oplus 0}{\vdash} \oplus_{2}}{\vdash a \oplus(b \oplus c), c^{\perp} \oplus 0} \oplus_{2} \quad \frac{\vdash d, d^{\perp}}{\vdash(a \oplus(b \oplus c)) \otimes d, c^{\perp} \oplus 0, d^{\perp}}} \underset{\frac{\vdash(a \oplus(b \oplus c)) \otimes d,\left(c^{\perp} \oplus 0\right) 8 d^{\perp}}{\vdash(a x}}{\vdash} \otimes
\end{aligned}
$$

Focalisation property for $\mu \mathrm{MALL}^{\infty}$

Focalisation property

A logical system is said to satisfy the focalisation property if for each proof π of the system, there is a focalised proof π^{\prime} such that π and π^{\prime} are equivalent up to permutation of rule inferences.

Focalisation property for $\mu \mathrm{MALL}^{\infty}$

Focalisation property

A logical system is said to satisfy the focalisation property if for each proof π of the system, there is a focalised proof π^{\prime} such that π and π^{\prime} are equivalent up to permutation of rule inferences.

Focalisation (Baelde et al. 2016)
$\mu \mathrm{MALL}^{\infty}$ with straight-thread validity admits the focalisation property.
Focalisation property for bouncing validity
Focalisation doesn't hold for bouncing validity criteria.

First counter-example to focalisation for bouncing-validity

with $A:=\nu X .(X \oplus \perp) \oplus \perp$.

Second counter-example to focalisation for bouncing-validity

An intermediate validity criterion

A $\mu \mathrm{MALL}^{\infty}$ pre-proof is intermediate-bouncing valid if for each branches, there is a valid bouncing-thread starting in it for which the negative part of its visible part intersect the branch infinitely often.

Third counter-example to focalisation for bouncing-validity

Conclusion

Two new bouncing-criteria admitting cut-elimination property

Conclusion

Two new bouncing-criteria admitting cut-elimination property

Counter-example for focalisation property for all those bouncing criteria

Conclusion

Two new bouncing-criteria admitting cut-elimination property

Counter-example for focalisation property for all those bouncing criteria

Not in this talk: We use those criteria to prove cut-elimination for bouncing-validity criteria in $\mu \mathrm{LL}$

Conclusion

Two new bouncing-criteria admitting cut-elimination property

Counter-example for focalisation property for all those bouncing criteria

Not in this talk: We use those criteria to prove cut-elimination for bouncing-validity criteria in $\mu \mathrm{LL}$

Future works: Adapting the infinitary proof system for reactive system typed with temporal logic (like the one from Cave et al. 2014)

